BCS-054

No. of Printed Pages: 7

BACHELOR OF COMPUTER APPLICATIONS (BCA) (REVISED)

Term-End Examination

December, 2023

BCS-054 COMPUTER ORIENTED NUMERICAL TECHNIQUES

Time: 3 Hours Maximum Marks: 100

Note: (i) Any calculator is allowed during examination.

- (ii) Question No. 1 is compulsory.
- (iii) Attempt any three more from the next four questions.

1. (a) Use Gauss Elimination method to solve the system of linear equations given below: 6

$$x_1 + 4x_2 + x_3 = 7$$

$$x_1 + 6x_2 - x_3 = 13$$

$$2x_1 - x_2 + 2x_3 = 5$$

(b) Use Gauss-Seidel method to solve the system of linear equations given below (results should be correct upto two decimal places only):

$$-4x_1 + x_2 + 10x_3 = 21$$

$$5x_1 - x_2 + x_3 = 14$$

$$2x_1 + 8x_2 - x_3 = -7$$

- (c) Use Regula-Falsi method to find positive root of the equation $x^3 + 4x^2 10 = 0$, correct upto two places of decimal.
- (d) Perform the following:
- 6
- (i) Express operator Δ in terms of operator δ
- (ii) Express operator Δ in terms of operator ∇

(e) Determine the Newton's forward difference interpolating polynomial that satisfies the data tabulated below:6

x	f(x)
1	10
2	19
3	40
4	79
5	142
6 adder	235

Also, find the value of f(x), at x = 1.5.

(f) Use Newton's Forward Difference (FD) formula to compute f'(x) and f''(x) at x = 2.0, for the data given below:

x	<i>f(x)</i>
1.5	1.2247
2.0	1.4142
2.5	1.5811
3.0	1.7320
3.5	1.8708

- (g) Calculate the value of the integral $\int_4^{5.2} \log x \, dx$, using Simpson's 1/3 rule. (Assume h = 0.2).
- 2. (a) Using Euler's method tabulate the solution of IVP (Initial Value Problem) $y' = -2ty^2$, y(0) = 1 in the interval [0,0.8], taking h = 0.2.
 - (b) Find the Taylor's series for $(1-x)^{-1}$ at x = 0.
 - (c) Perform four iterations of Secant method for finding the root of the equation $x^3 + 4x^2 10 = 0$ near x = 0 and x = 1. Compute upto two decimal places only. 8
- 3. (a) Write Newton-Raphson scheme for finding *q*th root of a positive number N. Hence

Download all NOTES and PAPERS at Stude

find cube root of 10 correct up to 3 places of decimal taking initial estimate as 2.0.

- (b) Write expression for E, Δ, δ , μ operators in terms of ∇ operator.
- (c) Use Lagrange's method of interpolation to find the value of y when x = 2.5 from the following data:

90p	y
0	- 6
0.5	-1.875
1.5	0.375
3.0	0

Compute upto four places of decimal only.

4. (a) Use divided difference table to find the value of f(a, b, c), for $f(x) = x^2$.

(b) Determine first and second derivatives of y = f(x) at x = 1.1 from the data tabulated below:

x	y = f(x)
1.0	0.0000
1.2	0.1280
1.2 1.4 1.6 Indicated for	0.5440
1.6 Made	1.2960
187	2.4320
2.0	4.0000

(c) Evaluate $\int_{0}^{1} \frac{dx}{1+x^2}$ using Trapezoidal rule,

subdivide the interval (0, 1) into 6 equal parts.

5. (a) Use modified Euler's method to find the value of y for x = 0.1 and 0.2 from the

differential equation $\frac{dy}{dx} = x^2 + y^2 - 2;$

- y(0) = 1. Compute upto 3 places of decimal only.
- (b) Use fourth order classical Runge-Kutta method to solve the initial value problem $u' = -2tu^2$ with u(t) = 1 and t = 0.2 on the interval [0,1].